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Abstract 

How to properly weight composition data is an important ongoing research topic for fisheries stock 

assessments and multiple methods for weighting composition data have been developed. Although 

several studies indicated that properly accounting for time-varying selectivity can reduce 

estimation biases in population biomass and management-related quantities, no study to date has 

compared the performance of widely-used data weighting methods when allowing for time-

varying selectivity. Here, we conducted four simulation experiments for this topic, aiming to 

provide guidance on weighting age-composition data given time-varying selectivity. The first 

simulation experiment showed that over-weighting should be avoided in general and even when 

estimating time-varying selectivity. The second simulation experiment compared three data 

weighting methods (McAllister-Ianelli, Francis, and Dirichlet-multinomial), within which the 

Dirichlet-multinomial method outperformed the other two methods when selectivity is time-

varying. The third and fourth simulation experiments further showed that given time-varying 

selectivity, the Dirichlet-multinomial method still performed well when age-composition data 

were over-dispersed and when the level of selectivity variation needed to be simultaneously 

estimated. Our simulation results support using the Dirichlet-multinomial method when estimating 

time-varying fishery selectivity. Also, the simulation results suggest that improving stock 

assessments by accounting for time-varying selectivity requires simultaneously addressing data 

weighting and time-varying selectivity. 

Keywords: Data weighting; time-varying selectivity; Dirichlet-multinomial method; age-

composition data  

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 



3 
 

1. Introduction 

Fisheries managers use stock assessment models to predict the likely impact of alternative 

management actions on fishery sustainability. In many jurisdictions worldwide, fisheries managers 

are recommended or required to manage fishery catches and population abundance in accordance 

with management targets or limits that are determined from stock assessment models (Methot 

2009). Accurate predictions of likely management impacts require stock assessment models to 

appropriately approximate biological processes including growth, mortality, maturity, and 

reproduction. To estimate these different processes, modern assessment models typically fit to a 

wide range of data sources including abundance indices, subsamples of age/length/sex-

composition in fishery-independent surveys or fishery operations, and total fishery landings 

(Maunder and Punt 2013). 

 Composition data from a fishery are usually not independent between ages and contain a 

reduced amount of information than they would do if sampled independently (Francis 2011, 

Maunder 2011, Thorson 2014). Due to, for example, age- or length-specific behaviors such as 

schooling and aggregating, the age and length of fish from the same set are more similar than from 

different sets. Namely, composition samples are positively correlated among adjacent age or length 

bins, contradicting the assumption of random sampling in the widely used multinomial distribution 

for composition data (Francis 2011). This phenomenon, which is referred to as “over-dispersion”, 

increases the variance in composition samples and decreases the effective sample size. The 

weighting of composition data in stock assessment models is positively related to the effective 

sample size, which is used by stock assessment scientists to accommodate unknown observation 

error and model mis-specification. 
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 Stock assessment models will often estimate different values for stock status and productivity 

when fitted to different subsets of available data (Maunder et al. 2017). In particular, inferring 

trends in population abundance from age- and length-composition sampling depends upon correct 

specification of many biological processes including mortality, growth, and availability to survey 

or fishery operations, and mis-specification of these processes will cause information in age- and 

length-composition data to be biased with respect to true trends in abundance (Minte-Vera et al. 

2017). For this reason and others, several papers have suggested that age- and length-composition 

data should be “down-weighted” relative to abundance index data whenever the two provide 

conflicting information about abundance trends (Francis 2011, 2014). Widely-used methods for 

weighting composition data include the methods by McAllister and Ianelli (1997), Francis (2011), 

and the linear parameterization of the Dirichlet-multinomial (D-M) likelihood (Thorson et al. 

2017). These and other methods all have in common that they down-weight age- and length-

composition data more when the assessment model predictions and available data are greatly 

different, and down-weight less (or even up-weight) when predictions and data match well. 

However, these methods also differ in well-documented respects: the McAllister-Ianelli (M-I) and 

Francis methods require iteratively fitting a stock assessment model and do not characterize model 

uncertainty caused by estimating data-weights, while the D-M method can be efficiently estimated 

as a model parameter with associated measure of uncertainty (Francis 2017, Thorson 2018). 

 One main reason for down-weighting composition data is that stock assessment models explain 

process error as observation or sampling error (Maunder and Piner 2017). For example, when a 

time-varying selectivity is mis-specified to be time-invariant, the stock assessment model 

attributes the discrepancy between observed and expected compositions solely to the error in the 

composition sampling process. As an alternative, analysts may instead revise a stock assessment 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 



5 
 

model such that it is better able to predict available data. There are many biological processes that 

could cause the proportion of an age/length/sex-composition that are selected by a given fishery 

or survey operation to vary over time, including spatial patterns in fishery effort (Sampson and 

Scott 2012), environmentally-driven changes in vertical distribution (Kotwicki et al. 2015), or 

spatial redistribution among well- and poorly-sampled habitats (Thorson et al. 2013a).  In general, 

these processes will cause “model mis-specification”, wherein a model cannot match available 

data even if unlimited or perfect data are available. In these cases, a stock assessment can estimate 

additional fixed or random effects representing time-varying selectivity, and this will generally 

increase the match between available data and model predictions (Lowe et al. 2017, Martell and 

Stewart 2014, Xu et al. 2018). In fact, a number of simulation studies have shown that properly 

accounting for time-varying selectivity can reduce estimation biases in population biomass and 

management-related quantities (Stewart and Martell 2014, Stewart and Monnahan 2017, Thorson 

and Taylor 2014, Xu et al. 2018).  

By increasing the match between model predictions and data, estimating time-varying 

selectivity will clearly impact the degree of data weighting estimated by different methods. 

However, no study to date has compared the performance of widely-used data weighting methods 

in the case where the assessment model estimates time-varying selectivity. Under the assumption 

of constant selectivity, Maunder (2011) showed that estimating the effective sample size of 

composition data led to an improvement over using the nominal sample size (the number of fish 

sampled each year) if the corresponding true selectivity varied from year to year. Under the 

assumption of time-varying selectivity, in comparison, estimating the effective sample size of 

composition data (namely, weighting composition data) is more problematic because the true level 

of variation in selectivity is unknown. Using a simulation approach, Stewart and Monnahan (2017) 
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explored the effects of data weighing on the performance of models with or without process error 

in selectivity. Based on simulation results, they concluded that assessment models should allow 

for process error in selectivity and should not excessively down-weight composition data. 

The main objective of this paper was to compare the performance of three data weighting 

methods when allowing for time-varying selectivity. Previous studies (e.g., Hulson et al. 2012) has 

evaluated the performance of several data weighting methods using simulations, but our study is 

the first to use simulation to compare the performance of data weighting methods in assessment 

models that estimate time-varying selectivity. We first conducted a simulation experiment to 

evaluate the sensitivity of model performance to the extent to which fisheries age-composition 

data are weighted in assessment models both with and without process error in selectivity, given 

that the true selectivity is time-varying. This experiment aimed to answer the question: what are 

the consequences of under- or over-weighting age-composition data when process error in 

selectivity is ignored or estimated? We then conducted three simulation experiments to compare 

the performance of three (M-I, Francis, and D-M) data weighting methods given that the true 

selectivity is time-varying, aiming to address the following questions: 

1) Which data weighting method performs best when the assessment model estimates time-

varying selectivity? 

2) How is the performance of the best data weighting method degraded owing to the over-

dispersion in age-composition data? 

3) Can we simultaneously weight age-composition data and estimate the selectivity variation 

penalty in stock assessments? 
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2. Materials and methods 

In this paper, we compared three methods for weighting age-composition data based on 

simulation experiments that were undertaken by modifying an age-structured simulation-

estimation package CCSRA (Thorson and Cope 2015). We first described the basic structure and 

hypotheses for the operating model (OM), sampling model (SM), and estimation model (EM) used 

in our simulation experiments. We then described in detail how the OM, SM, and EM were 

configured and how model performance was evaluated in each simulation experiment. In each 

simulation experiment, the OM simulated the true population dynamics from which the SM 

generated observation data. The EM was then fitted to the generated observation data and model 

performance was evaluated by comparing the estimates of population attributes that the EM 

provided with the corresponding true values that the OM simulated.  

2.1.  Simulation models 

2.1.1. Operating model 

The OM was an age-structured model (Table 1) that allows fishery selectivity to vary either 

independently or correlated from a specified parametric functional form. It was used in this study 

to simulate the true population dynamics for two species, Pacific hake (Merluccius productus) and 

Pacific sardine (Sardinops sagax), that correspond to a “periodic” and “opportunistic” type of life 

history, respectively (Table 2). The level of recruitment variation (𝜎𝜎𝑅𝑅 in Eq. T1.2) was specified 

to be low (0.4) for Pacific hake and to be either low (0.4) or high (0.8) for Pacific sardine, in order 

to compare the performance of data weighting methods under contrasting levels of recruitment 

variation. A higher level of recruitment variation caused a larger contrast in each year’s age-

composition observation. The two types of life history with differing recruitment assumptions were 

hereafter referred to as hake-low, sardine-low, and sardine-high. The OM included one fishery and 
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the selectivity of which in age 𝑎𝑎 and year 𝑡𝑡 was specified to be a product of a parametric (logistic) 

form and a random deviation term away from the parametric form: 

1
𝑆𝑆 𝜀𝜀𝑎𝑎,𝑡𝑡𝑎𝑎,𝑡𝑡 = (     1)−𝑆𝑆 𝑎𝑎−𝑆𝑆 ) × 𝑒𝑒 (  

1 + 𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 50

Particularly, the non-parametric deviation term (𝜀𝜀𝑎𝑎,𝑡𝑡), which can be treated as a process error in 

fishery selectivity, was specified to follow a two-dimensional AR(1) process: 

vec(𝛆𝛆) ~ MVN�𝟎𝟎,𝜎𝜎2 �𝑆𝑆 𝐑𝐑⊗ 𝐑𝐑�   (2𝑎𝑎) 

𝐑𝐑𝑎𝑎,𝑎𝑎� = 𝜌𝜌|𝑎𝑎−𝑎𝑎�|
𝑎𝑎    (2𝑏𝑏) 

𝐑𝐑�𝑡𝑡,𝑡̃𝑡 = 𝜌𝜌|𝑡𝑡−𝑡̃𝑡|
𝑡𝑡    (2𝑐𝑐) 

where 𝜎𝜎𝑆𝑆  (>0) is the standard deviation of selectivity deviations that controls the degree of 

variation in fishery selectivity and 𝜌𝜌𝑎𝑎 (-1<𝜌𝜌𝑎𝑎<1) and 𝜌𝜌𝑡𝑡 (-1<𝜌𝜌𝑡𝑡<1) are two AR(1) coefficients that 

control the degree to which selectivity deviations are autocorrelated in age and time, respectively. 

The deviations of fishery selectivity are identical and independent (IID) when 𝜌𝜌𝑎𝑎 and 𝜌𝜌𝑡𝑡 are both 

zeroes because this specification simplifies Eq. 2a to be 

𝜀𝜀𝑎𝑎,𝑡𝑡 ~ N(0,𝜎𝜎2𝑆𝑆 )   (3) 

We explored four OMs with differing autocorrelation cases under a moderate level of 

selectivity variation: 

1. OM1 (“Independent”). The deviations of fishery selectivity are independent (𝜌𝜌𝑎𝑎 = 0;𝜌𝜌𝑡𝑡 =

0;𝜎𝜎𝑆𝑆 = 0.4); 

2. OM2 (“Time-correlated”). The deviations of fishery selectivity are highly autocorrelated in 

time (𝜌𝜌𝑎𝑎 = 0;𝜌𝜌𝑡𝑡 = 0.8;𝜎𝜎𝑆𝑆 = 0.4); 
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3. OM3 (“Age-correlated”). The deviations of fishery selectivity are highly autocorrelated in age 

(𝜌𝜌𝑎𝑎 = 0.8;𝜌𝜌𝑡𝑡 = 0;𝜎𝜎𝑆𝑆 = 0.4); 

4. OM4 (“Age- and time-correlated”). The deviations of fishery selectivity are highly 

autocorrelated in both age and time (𝜌𝜌𝑎𝑎 = 0.8;𝜌𝜌𝑡𝑡 = 0.8;𝜎𝜎𝑆𝑆 = 0.4). 

We used the mvrnorm function in the MASS R package (version 7.3-50, Venables and Ripley 

2002) to simulate the autocorrelated process error in fishery selectivity. Estimating selectivity 

deviations is usually difficult for the youngest and oldest age groups due to a lack of adequate age-

composition samples for those age groups, so in the OM we assumed that 𝜀𝜀𝑎𝑎,𝑡𝑡 = 𝜀𝜀2,𝑡𝑡 for 𝑎𝑎 < 2 and 

𝜀𝜀𝑎𝑎,𝑡𝑡 = 𝜀𝜀7,𝑡𝑡 for 𝑎𝑎 > 7, namely, vec(𝛆𝛆) = (𝜀𝜀2,1, … , 𝜀𝜀2,𝑇𝑇 , 𝜀𝜀3,1, … , 𝜀𝜀3,𝑇𝑇 , … … , 𝜀𝜀7,1, … , 𝜀𝜀7,𝑇𝑇)′. Due to this 

assumption, the simulated time-varying selectivity cannot be dome-shaped (for 𝑎𝑎 > 7, 𝜀𝜀𝑎𝑎,𝑇𝑇 ≡ 𝜀𝜀7,𝑇𝑇). 

The parametric selectivity profile as well as the associated variability (induced by the random 

deviation term) for Pacific hake and Pacific sardine were compared in Figure 1. For both species, 

we set the plus-group (𝐴𝐴) and last simulation year (𝑇𝑇) to be 15 and 20, respectively. Fishing 

mortality was simulated according to an effort-dynamics model (T1.6; more details in Thorson et 

al. (2013b))  that was used to generate contrast in spawning biomass (SB): the fishery (Fig. 2, left 

column) drove SB down to about 40% (see Table 2 for parameter values) of the unfished level 

over 20 years (Fig. 2, right column). A detailed description of how the life history parameters were 

derived for the two types of life histories (Pacific hake and Pacific sardine) also can be found in 

Thorson and Cope (2015).  

2.1.2. Sampling model 

The sampling model generated the following observation data from the true population 

dynamics specified by the OM: 
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• Fishery total catch in weight, which was assumed to be known without error. 

• Fishery index of abundance (𝐼𝐼), which was assumed to be log-normally distributed with a 

coefficient of variation of 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  and catchability of 𝑞𝑞 : ln(𝐼𝐼𝑡𝑡)~N(log (𝑞𝑞𝑞𝑞𝑡𝑡), ln(1 +

𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)), where 𝑞𝑞𝑡𝑡 = ∑𝐴𝐴
𝑎𝑎=0𝑁𝑁𝑎𝑎,𝑡𝑡𝑤𝑤𝑎𝑎𝑆𝑆𝑎𝑎,𝑡𝑡 is the exploitable biomass in year 𝑡𝑡. 

• Fishery age-composition data (𝐀𝐀), which was assumed to be drawn from a multinomial 

distribution with a sample size of 𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 : 𝑨𝑨𝑡𝑡~Multinomial(𝑷𝑷𝑡𝑡 ,𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡) , where 𝑷𝑷𝑡𝑡 = 𝑪𝑪𝑡𝑡/

∑𝐴𝐴
𝑎𝑎=0 𝐶𝐶𝑎𝑎,𝑡𝑡 is the true age-composition proportion in year 𝑡𝑡. 

We assumed that both the index of abundance and age-composition data were informative 

(𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.1 and 𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = 200) and were available every year during the simulation period. 

Therefore, model performance was not limited by low-quality data and should be primarily 

determined by how properly the fishery age-composition data (𝑨𝑨𝑡𝑡) were weighted. 

2.1.3. Estimation model 

The estimation model had the same population dynamics as the operating model except 

whether and how fishery selectivity varied over age and time. Three EMs with differing selectivity 

specifications were considered in each simulation experiment: 

• EM1 (“zero deviations”). Selectivity of the fishery was specified to be constant by fixing 

σ�S  as zero: 𝑆̂𝑆𝑎𝑎 = 1
−𝑆𝑆� �𝑎𝑎−𝑆𝑆�50�

. This specification for fishery selectivity is still a 
1+𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

common practice in stock assessments. 

• EM2 (“IID deviations”). Selectivity of the fishery was specified to be age- and time-

varying and the deviations of which were specified to be identical and independent of age 

and time: 𝑆̂𝑆𝑎𝑎,𝑡𝑡 = 1 𝜀𝜀�𝑎𝑎,𝑡𝑡 2
−𝑆𝑆� �𝑎𝑎−𝑆𝑆�  N

50�
 × 𝑒𝑒 , where 𝜀𝜀𝑎𝑎,𝑡𝑡~ (0,𝜎𝜎�𝑆𝑆 ). 

1+𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
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• EM3 (“AR deviations”). Selectivity of the fishery was specified to be age- and time-varying 

and the deviations of which were specified to be autocorrelated: 𝑆̂𝑆𝑎𝑎,𝑡𝑡 = 1
−𝑆𝑆� �𝑎𝑎−𝑆𝑆�1+𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 50�

 ×

̃𝑒𝑒𝜀𝜀�𝑎𝑎,𝑡𝑡, where vec(𝛆𝛆�) ~ MVN�𝟎𝟎,𝜎𝜎�2𝑆𝑆 𝐑𝐑⊗ 𝐑𝐑��, 𝐑𝐑𝑎𝑎,𝑎𝑎� = 𝜌𝜌�|𝑎𝑎−𝑎𝑎�|, and 𝐑𝐑�𝑎𝑎 𝑡𝑡,𝑡̃𝑡 = 𝜌𝜌�|𝑡𝑡−𝑡𝑡|
𝑡𝑡 . 

This study was focused on two data weighting issues in stock assessments: sensitivity of model 

performance to data weighting and which data weighting method performs better when estimating 

age- and time-varying selectivity. In some simulation experiments, we assumed that the hyper-

parameters for selectivity deviations (𝜎𝜎�𝑆𝑆, 𝜌𝜌�𝑎𝑎, and 𝜌𝜌�𝑡𝑡) were known without error; in other simulation 

experiments, we estimated these hyper-parameters. We included both simulation experiments to 

determine model performance either in an idealized case (when these hyper-parameters are known) 

or in a more realistic case (when they must be estimated). 

The age-composition data from the fishery were assumed to be drawn from a multinomial 

distribution with an estimated effective sample size of 𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒. It specified the extent to which the 

fishery age-composition data were weighted: 

𝑨𝑨𝑡𝑡~Multinomial�𝑷𝑷�𝑡𝑡 ,𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒�   (4) 

where 𝑷𝑷� � 𝐴𝐴 ̂𝑡𝑡 = 𝑪𝑪𝑡𝑡/∑𝑎𝑎=0 𝐶𝐶𝑎𝑎,𝑡𝑡 is the expected age-composition proportion in year 𝑡𝑡.  

Unless otherwise noted, the three EMs were correctly specified (fixed at the true values) for all 

model parameters except unfished recruitment (R0), annual recruitment (Rt), parametric selectivity 

(Sslope and S50), selectivity deviations (𝜀𝜀a,t in EMs IID deviations and AR deviations), and annual 

fully-selected fishing mortality (𝐹𝐹𝑡𝑡). Among those estimated parameters, R0, Sslope, S50 and 𝐹𝐹𝑡𝑡 were 

estimated as fixed effects, and 𝜀𝜀a,t and Rt were estimated as random effects. We used Template 

Model Builder (TMB, Kristensen et al. (2016)) to implement mixed-effect parameter estimation. 
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In TMB, the marginal likelihood of fixed effect parameters was calculated using the Laplace 

approximation to integrate across random effects (Kristensen et al. 2016) and fixed effect 

parameters were then estimated via maximizing the marginal likelihood within the R (version 3.4.0) 

computing environment (R Core Team 2017). We used the nlminb function to minimize the 

negative of the marginal log-likelihood and confirmed model convergence based on the 

convergence flag the function provided and a positive-definite Hessian. 

2.2.  Simulation experiments 

In this study, we conducted four related simulation experiments. A summary of the factorial 

design of the OM and EM in each experiment can be found in Table 3. 

2.2.1. What is the impact of under, right, or over-weighting on model performance? 

The first simulation experiment aimed to evaluate the sensitivity of estimation performance of 

the three EMs to data weighting, given that the true fishery selectivity had independent or 

autocorrelated deviations. We compared the performance of each EM in estimating SB under three 

data weighting scenarios: 1) under-weighting age-composition data by a factor of 10, which was 

realized by setting 𝑛𝑛𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡 = 0.1 × 𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = 20  in the three EMs; 2) right-weighting age-

composition data, which was realized by setting 𝑛𝑛𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡 = 𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = 200 in the three EMs; and 3) 

over-weighting age-composition data by a factor of 10, which was realized by setting 𝑛𝑛𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡 =

10 × 𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = 2000 in the three EMs. In this simulation experiment, four hundred simulation 

replicates with unique process errors (in recruitment and selectivity) and observation errors (in 

abundance index and age-composition observations) were generated for every combination of 

population dynamics and OM case. Each EM (zero deviations, IID deviations, or AR deviations) 

was then fitted to every generated simulation replicate individually under three data weighting 
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scenarios (under, right, or over-weighting). We evaluated the estimation performance of the three 

EMs based on the mean absolute relative error (MARE) in the estimate of final year SB: 

mean(|𝑆𝑆�𝑞𝑞𝑡𝑡=20/𝑆𝑆𝑞𝑞𝑡𝑡=20 − 1|). This metric took both accuracy and precision into consideration.  

2.2.2. How well can we estimate effective sample size given time-varying selectivity 

The second simulation experiment aimed to compare three widely-used data weighting 

methods in stock assessments: 

• McAllister-Ianelli (M-I) method (McAllister and Ianelli 1997). The effective sample size for 

the multinomial distribution was iteratively estimated through a tuning algorithm. In this study, 

it was computed as the harmonic mean of annual effective sample sizes 

𝑇𝑇
𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒 =    (5𝑎𝑎) 

1∑𝑇𝑇
𝑡𝑡=1 � �𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡

∑𝐴𝐴
𝑎𝑎=0 �𝑃𝑃�𝑎𝑎,𝑡𝑡�1 − 𝑃𝑃�𝑎𝑎,𝑡𝑡��

𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒 = 5𝑏𝑏) 
𝑡𝑡 ∑ �𝑃𝑃𝑎𝑎,𝑡𝑡 − 𝑃𝑃� 2    (

𝐴𝐴
𝑎𝑎=0 𝑎𝑎,𝑡𝑡�

 and iteratively tuned until its relative difference between two iterations was less than 5%. 

• Francis method (Francis 2011). The effective sample size for the multinomial distribution was 

also iteratively estimated through a tuning algorithm. Specifically, it is the inverse of the 

variance of normalized differences between the observed (𝑃𝑃′𝑡𝑡 ) and expected (𝑃𝑃�′𝑡𝑡 ) mean ages in 

age-composition 

1
𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒 =    (6𝑎𝑎)

𝑃𝑃′Var� 𝑡𝑡 − 𝑃𝑃�′
 

𝑡𝑡 �
�𝑣𝑣𝑡𝑡
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𝐴𝐴
𝑃𝑃′𝑡𝑡 = � �𝑎𝑎𝑃𝑃𝑎𝑎,𝑡𝑡�    (6𝑏𝑏) 

𝑎𝑎=0

𝐴𝐴
𝑃𝑃�′𝑡𝑡 = � �𝑎𝑎𝑃𝑃�𝑎𝑎,𝑡𝑡�    (6𝑐𝑐) 

𝑎𝑎=0

𝐴𝐴 2𝑣𝑣𝑡𝑡 = � �𝑎𝑎2𝑃𝑃�𝑎𝑎,𝑡𝑡� − 𝑃𝑃�′𝑡𝑡    (6𝑑𝑑) 
𝑎𝑎=0

 and iteratively tuned until its relative difference between two iterations was less than 5%. 

• Dirichlet-multinomial (D-M) method (Thorson et al. 2017). Different from the two tuning 

methods above, the D-M method estimated the effective sample size based on maximum 

likelihood. By assuming that age-composition data followed the linear parameterization of the 

Dirichlet-multinomial distribution, the effective sample size of the age-composition data was 

computed as 

1 + 𝜃𝜃𝑛𝑛
𝑛𝑛 𝑖𝑖
𝑡𝑡𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡    (7) 

1 + 𝜃𝜃

where 𝑛𝑛𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡  was the input sample size of the age-composition data. The D-M method 

estimated the effective sample size by fixing age-composition data (𝑛𝑛𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡𝑃𝑃𝑎𝑎,𝑡𝑡) and instead 

estimating 𝜃𝜃 as a parameter. The likelihood associated with the age-composition data was 

𝑇𝑇 𝐴𝐴
Γ�𝜃𝜃𝑛𝑛𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡� Γ�𝑛𝑛𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡𝑃𝑃𝑎𝑎,𝑡𝑡 + 𝜃𝜃𝑛𝑛𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡𝑃𝑃�𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 ∝�� � 𝑎𝑎,𝑡𝑡��    (8) 

Γ�𝑛𝑛 + 𝜃𝜃𝑛𝑛 𝑖𝑖𝑎𝑎𝑡𝑡 Γ�𝜃𝜃𝑛𝑛𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡𝑃𝑃�𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡 𝑖𝑖𝑎𝑎 � 𝑎𝑎,𝑡𝑡�𝑡𝑡=1 𝑎𝑎=0

The three data weighting methods were compared based on two metrics: the ratio of estimated 

effective sample size to true sample size (𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒/𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡) and the MARE in the estimate of final year 

SB. In this simulation experiment, four hundred simulation replicates with unique process errors 

and observation errors were generated for every combination of population dynamics and OM case. 
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OM case Independent approximately matched the simulation scenario explored in Thorson et al. 

(2017), but other OM cases represented the first attempt to explore the sensitivity of the D-M 

method to model mis-specification.  

2.2.3. How does over-dispersion affect D-M estimates given time-varying selectivity? 

In the third simulation experiment, we evaluated the performance of the three data weighting 

methods in estimating the effective sample size of over-dispersed age-composition data. Over-

dispersed age-composition data were simulated by assuming that the extent of over-dispersion is 

constant across age and time: 

𝐴̃𝐴𝑎𝑎,𝑡𝑡 = 𝐴𝐴𝑎𝑎,𝑡𝑡 × 𝑑𝑑   (9) 

where 𝑑𝑑 (>1) denotes the extent of over-dispersion in age-composition data. For the two tuning 

methods, the estimated effective sample size was a function of age-composition proportion (𝑃𝑃𝑎𝑎,𝑡𝑡), 

which, under this assumption, did not change with the extent of over-dispersion in age-composition 

data (𝑃𝑃 = 𝐴̃𝐴 𝐴𝐴 ̃𝑎𝑎,𝑡𝑡 𝑎𝑎,𝑡𝑡/∑𝑎𝑎=0 𝐴𝐴𝑎𝑎,𝑡𝑡 = 𝐴𝐴 𝐴𝐴 𝐴𝐴
𝑎𝑎,𝑡𝑡 × 𝑑𝑑/∑𝑎𝑎=0(𝐴𝐴𝑎𝑎,𝑡𝑡 × 𝑑𝑑) = 𝐴𝐴𝑎𝑎,𝑡𝑡/∑𝑎𝑎=0𝐴𝐴𝑎𝑎,𝑡𝑡). Thus, the estimated 

effective sample size based on either tuning method should not be affected by the over-dispersion 

in age-composition data. The focus of this simulation experiment was indeed on the D-M method, 

for which 𝑛𝑛𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡 was specified to be the actual sample size (number of fish sampled; 𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 × 𝑑𝑑) 

of the over-dispersed age-composition data. Eq. 9 simulated a type of over-dispersion case that all 

fish were caught in groups of 𝑑𝑑 individuals with identical age. By this definition, the true sample 

size would be 𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡. 

We computed the ratio of estimated effective sample size to true sample size (𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒/𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡) for 

evaluating the performance of the D-M method with respect to estimating the effective sample 

size, given that the age-composition data are over-dispersed. Due to the high computation demand 
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in this simulation experiment, we generated one hundred simulation replicates with unique process 

errors and observation errors for every combination of population dynamics and OM case. 

2.2.4. Can we estimate time-varying selectivity penalty and composition weighting simultaneously? 

Lastly, we considered a more realistic situation where the degree of variation in selectivity was 

estimated rather than known without error. In this simulation experiment, the degree of variation 

in selectivity was iteratively estimated using a tuning algorithm inspired by Methot and Taylor 

(2011) and introduced by Xu et al. (2018) 

7 𝑇𝑇
1 2𝜎𝜎�2𝑆𝑆 = SD(𝛆𝛆�)2 + �� SE�𝜀𝜀𝑎𝑎,𝑡𝑡�    (10) 

6𝑇𝑇
𝑎𝑎=2 𝑡𝑡=1

To replicate the case of Stock Synthesis (Methot and Wetzel 2013) and other widely-used 

penalized likelihood models, here 𝜎𝜎�𝑆𝑆 was estimated via the tuning approach instead of the mixed-

effect approach (i.e., EM3 instead of EM4 in Xu et al. 2018). Xu et al. (2018) showed that this 

tuning algorithm could accurately estimate 𝜎𝜎�𝑆𝑆 when the effective sample size was known without 

error. In real-world assessments, however, both 𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒 and 𝜎𝜎�𝑆𝑆 are unknown and need to be estimated. 

 The focus of this simulation experiment was on the combined performance of the D-M method 

for estimating 𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒 and the tuning method for estimating 𝜎𝜎�𝑆𝑆. How the effective sample size and 

selectivity hyper-parameters were simultaneously estimated in this simulation are described below: 

• Step 1: Tune selectivity variability (𝜎𝜎�𝑆𝑆) and effective sample size (𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒). 𝜎𝜎�𝑆𝑆 was iteratively 

tuned in EM IID deviations until matching Eq. 10 within an accuracy of 0.01 while the D-M 

method was used in every iteration of 𝜎𝜎�𝑆𝑆  to estimate 𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒 . 𝜎𝜎�𝑆𝑆  was then fixed in EM IID 

deviation and the estimated selectivity deviations were extracted. 
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• Step 2: Estimate selectivity autocorrelations (𝜌𝜌�𝑎𝑎 and 𝜌𝜌�𝑡𝑡). 𝜌𝜌�𝑎𝑎 and 𝜌𝜌�𝑡𝑡 were estimated based on 

an “external” estimation method (for more details see the description of EM AR deviations in 

Xu et al. 2018). In brief, the two autocorrelation coefficients were estimated using the 

maximum likelihood approach by fitting an external stand-alone model to selectivity 

deviations that EM AR deviations estimated in step 1. The external stand-alone model 

estimated 𝜌𝜌�𝑎𝑎  and 𝜌𝜌�𝑡𝑡  by assuming that selectivity deviations follow the multivariate normal 

distribution described in Eq. 2 and that both 𝜌𝜌�𝑎𝑎 and 𝜌𝜌�𝑡𝑡 are between 0 and 1 (realized by using 

the logit transformation). 

The combined performance was evaluated according to the ratios of estimated to true values 

of both 𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒 and 𝜎𝜎�𝑆𝑆. In addition, we compared the two estimated autocorrelation coefficients with 

the corresponding true values to evaluate the performance of the “external” estimation method for 

selectivity autocorrelations. Due to the high computation demand in this simulation experiment, 

we generated one hundred simulation replicates with unique process errors and observation errors 

for every combination of species and OM case. 

 

3. Results 

3.1.  What is the impact of under, right, or over-weighting on model performance? 

Overall, over-weighting age-composition data generally performed worse than under-

weighting age-composition data to the same extent. Results of the first simulation showed that 

over-weighting tended to cause a larger estimation error in the final year SB (Fig. 3) in comparison 

to under-weighting. Results also showed that over-weighting consistently corresponded to 
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significantly worse estimation performance than under-weighting for EM AR deviations, the EM 

with correctly-specified selectivity (Fig. 3; see Fig. A1 for resampled uncertainty levels). 

Whether under-weighting or over-weighting age-composition data performed better varied 

somewhat among species and OMs. Under OM Independent, right-weighting and over-weighting 

age-composition data performed best and worse, respectively, regardless of how selectivity was 

specified in the EM (Fig. 3, first column). Over-weighting also performed worse under OM Time-

correlated, except for EM IID deviations for Pacific hake, which performed worst when age-

composition data were down-weighted (Fig. 3, second column). It is worth noting that under-

weighting could produce the best performing EM (i.e., EM IID deviations) in this case. Under OM 

Age-correlated, over-weighting performed better and worse than under-weighting when the 

variation in selectivity was ignored (EM zero deviations) and estimated (EMs IID deviations and 

AR deviations), respectively (Fig. 3, third column). Again, right-weighting generally performed 

best regardless of how selectivity was specified in the EM. Under OM Age- and time-correlated, 

the three data weighting scenarios performed similarly for EMs zero deviations and IID deviations, 

at least within the weighting range (0.1×-10×) investigated in this study (Fig. 3, fourth column). 

For EM AR deviations, over-weighting and right-weighting consistently performed worst and best, 

respectively.   

3.2.  How well can we estimate the effective sample size given time-varying selectivity? 

Among the three data weighting methods (M-I, Francis, and D-M methods), the D-M method 

provided the most accurate estimated effective sample size regardless of whether the EM allowed 

for time-varying selectivity. For EM zero deviations which mistakenly specified constant 

selectivity, all three data weighting methods estimated a reduced effective sample size (medians 

within 0.2×-0.7× of the true sample size) (Fig. 4). This behavior was expected given that these 
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models are mis-specified. For EMs IID deviations and AR deviations, the effective sample size 

that the D-M method provided was very accurate while those the M-I method and especially the 

Francis method estimated were considerably larger than the true sample size (Fig. 4). From a 

median point of view, the M-I method over-estimated the effective sample size by as much as 4× 

and 13× for Pacific hake and Pacific sardine, respectively; the Francis method over-estimated the 

effective sample size by as much as 8× and 20× for Pacific hake and Pacific sardine, respectively. 

It is worth noting that, by definition (Eq. 7), the effective sample size estimated by the D-M method 

must be smaller than or approximately the same as (when 𝜃𝜃 is estimated to be very large) the input 

sample size, which in this simulation experiment is identical to the true sample size. Therefore, the 

effective sample sizes estimated by the D-M method were all smaller than the true sample size in 

this simulation experiment, regardless of whether the EM accounts for time-varying selectivity or 

not. 

Because the D-M method provided the most accurate estimated effective sample size when 

allowing for time-varying selectivity, both EMs IID deviations and AR deviations performed best 

when using the D-M method for data weighting. The first simulation informed us that estimation 

performance was relatively insensitive to data weighting when age-composition data were under-

weighted (Fig. 4). Since all three data weighting methods under-estimated the effective sample 

size under constant selectivity, the method for data weighting had little effect on the estimation 

performance of EM zero deviations (Fig. 5). For EMs IID deviations and AR deviations, in 

comparison, estimation performance could be significantly affected by the method on which data 

weighting was based: the D-M and Francis method generally corresponded to smallest and largest 

errors in the estimate of final year SB, respectively (Fig. 5). That was because, when allowing for 

time-varying selectivity, the M-I method and especially the Francis method considerably over-
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estimated the effective sample size, which was, in contrast, slightly under-estimated by the D-M 

method (Fig. 4). Also, the extent to which the two tuning methods over-estimated the effective 

sample size when estimating time-varying selectivity was larger for Pacific sardine than Pacific 

hake. Consequently, the benefit of the D-M method in terms of improving the estimate of final 

year SB was significant for Pacific sardine, but not for Pacific hake (Fig. 5; see Fig. A2 for 

resampled uncertainty levels). 

Some cases in this simulation suggested that estimating time-varying selectivity (EMs IID 

deviations and AR deviations) resulted in worse performance than assuming time-invariant 

selectivity (EM zero deviations) when using either the Francis or M-I method for data weighting 

(Fig. 5). This is surprising, given that the true selectivity in the OM was simulated to have a 

moderate level of variation over both age and time (see Eq. 1 and Fig. 1). This pattern indicated 

that improving stock assessments by accounting for time-varying selectivity requires 

simultaneously addressing data weighting and the time-varying process. 

3.3.  How does over-dispersion affect D-M estimates given time-varying selectivity? 

The effective sample size of over-dispersed age-composition data was under-estimated by the 

D-M method for all three EMs, but the degree of under-estimation in all cases remained in a 

reasonable range (medians larger than 0.2× of the true sample size) (Fig. 6). As expected, the 

effective sample size was estimated to be considerably below the input sample size (medians 

within 0.2×-0.6× of the true sample size) for EM zero deviations. This result is expected given that 

this EM is mis-specified. When allowing for time-varying selectivity (EMs IID deviations and AR 

deviations), the median estimated effective sample size that the D-M method provided was above 

0.5× of the true sample size under all degrees of over-dispersion (Fig. 6). The bias in the estimated 

effective sample size became slightly greater as the degree of over-dispersion increased from 2 to 
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10, which was in accordance with the trend found in a previous study (see Fig. 4 in Thorson et al. 

(2017). We also noted that although the difference was not dramatic, the D-M method generally 

performed better for Pacific hake simulations than Pacific sardine simulations. 

3.4. Can we estimate time-varying selectivity penalty and composition weighting simultaneously? 

Like in the previous simulation experiment where the level of variation in selectivity was 

assumed known without error, the median estimated effective sample size that the D-M method 

provided was still above 0.5× of the true sample size (Fig. 7). Moreover, the bias in the estimated 

effective sample size was still positively related to the degree of over-dispersion in age-

composition data. The first simulation suggested that the performance of models that estimated 

time-varying selectivity was not sensitive to down-weighting age-composition data. As such, it 

was not surprising to find that MARE was negligibly impacted by the under-estimation of the 

effective sample size (Fig. A3) within this range of degree of under-estimation (by 10%-50%) (Fig. 

7). Namely, model performance was not sensitive to the degree of over-dispersion in age-

composition data when using the D-M method for data weighting. Importantly, in combination 

with the D-M method for data weighting, the tuning method that was developed by Xu et al. (2018) 

was useful for estimating the level of variation in selectivity. The level of variation in selectivity 

was only slightly under-estimated (medians within 0.75×-1× of the true level), within which the 

largest degree of under-estimation occurred under OM Age- and time-correlated. 

The “external” estimation method for the two autocorrelation coefficients for selectivity 

deviations ( 𝜌𝜌�𝑎𝑎  and 𝜌𝜌�𝑡𝑡 ) were also useful (Fig. 8). Under OM Independent where the true 

coefficients were both 0, the median estimates that the “external” method provided were between 

0 and 0.2. Under OMs Age-dependent and Time-dependent, where one of the two true coefficients 

was positive (0.8), the median estimate of that coefficient was only slighted under-estimated 
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(median larger than 0.6). Under OM Age- and time-dependent where the true coefficients were 

both positive (0.8), the median estimates of the two coefficients were mostly above 0.4 In 

accordance with the finding in Xu et al. (2018), this “external” estimation method generally 

performed better for 𝜌𝜌�𝑡𝑡 than 𝜌𝜌�𝑎𝑎 (Fig. 8). 

 

4. Discussion 

This study aimed to compare the performance of widely-used data weighting methods in the 

assessment models that allow for time-varying selectivity. We conducted four simulation 

experiments to evaluate the sensitivity of model estimates to data weighting, and more importantly, 

to evaluate the performance of M-I, Francis, and D-M methods given time-varying selectivity. For 

assessment models that estimated time-varying selectivity, over-weighting generally led to larger 

estimation error in final year SB than did under-weighting to the same extent, suggesting that over-

weighting should be avoided even when allowing for time-varying selectivity. Among the three 

data weighting methods compared in this study, the D-M method out-performed the other two 

methods when estimating time-varying selectivity. Moreover, the D-M method was still useful 

even when age-composition data were over-dispersed and the level of variation in selectivity was 

simultaneously estimated. In conclusion, the D-M method was recommended over the M-I and 

Francis methods for the assessments that explore time-varying selectivity. 

Overall, over-weighting composition data tends to cause larger estimation error in final year 

SB than does under-weighting composition data to the same extent. The result echoes Francis’ 

(2011) suggestion that age-composition data should not be over-weighted. This suggestion was 

made based on the idea that while composition data are important to inform selectivity and 
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recruitment variation, the estimated population trend should be primarily driven by the more 

reliable abundance indices, especially when data conflict exists between abundance indices and 

composition data. Importantly, this study shows that estimation performance is more degraded by 

over-weighting than under-weighting regardless of whether selectivity is mis-specified or not. In 

some cases, data weighting had a larger impact on the estimation performance of assessment 

models with correctly-specified selectivity than those without, implying that data weighting is 

important for stock assessments with any selectivity specifications. 

For assessment models that estimate time-varying selectivity, the D-M method overall 

performs better than the M-I and Francis methods with regards to weighting age-composition data. 

Under the specification of time-varying selectivity, the M-I method and especially the Francis 

method over-estimate the effective sample size greatly and consequently correspond to large 

estimation error in final year SB. The fact that the effective sample size is greatly over-estimated 

by the two tuning methods is likely due to the expected and observed age-compositions tend to 

match more closely under a more flexible (i.e., time-varying) selectivity specification (Francis 

2017, Punt et al. 2014). In contrast, the D-M method under-estimates the effective sample size 

slightly and consequently corresponds to smaller estimation error in final year SB. When age-

composition data are over-dispersed, simulation results show that the D-M method under-estimates 

the effective sample size to a certain extent. However, the extent of the under-estimation is still 

smaller in comparison with the extent to which the two tuning methods over-estimate the effective 

sample size of randomly-sampled age-composition data. Furthermore, assessment models that use 

the D-M data weighting method consider the uncertainty about data weighting. the D-M method 

estimates effective sample size as a parameter of the assessment model based on maximum 

likelihood, so it can propagate the uncertainty about data weighting into the confidence interval of 
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estimated population and management attributes (Thorson et al. 2017). In contrast, both the two 

tuning methods ignore the uncertainty in estimated effective sample size, leading to under-

estimated uncertainty in model estimates (Maunder 2011). However, it should be noted that when 

using the D-M method for data weighting, the confidence interval of estimated population and 

management attributes could be over-estimated as the simulations in this study show that the D-M 

method tends to under-estimate the effective sample size. 

For assessment models that estimate time-varying selectivity, the D-M data weighting method 

is robust for over-dispersed age-composition data, which is a common phenomenon in fisheries. 

Within the range of over-dispersion we investigated (2×-10×), the D-M method under-estimated 

the effective sample size by less than 50%, regardless of the OM case and type of life history. The 

first simulation experiment showed that under-weighting age-composition data by such an extent 

should only minorly degrade the estimation performance of the assessment model. It should be 

noted that the D-M method tends to down-weight age-composition data to a much larger extent 

when selectivity is specified to be constant than time-varying, implying that data weighting based 

on the D-M method is informed by the goodness-of-fit of age-composition data in the assessment 

model (Thorson et al. 2017). In addition to the linear parameterization used in the paper, the 

Dirichlet-multinomial can also be parameterized in another way (i.e., the saturation 

parameterization). In the simulations in the paper, the input sample size is specified to be identical 

among years, in which case the two parameterizations result in identical parameter estimates. 

Future research could compare the two parameterizations when input sample size varies among 

years. 

We are aware that the comparison of the three data weighting methods in the second simulation 

experiment is tilted towards the D-M method. By construction, the D-M method only allows the 
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effective sample size to be smaller than the input sample size (which is specified to be the true 

sample size in that simulation), leading to a more restricted parameter space for the effective 

sample size and a larger probability for the effective sample size to be close to the true sample size. 

To make a fairer comparison between the three data-weighting methods, we then conducted the 

third simulation experiment in which the effective sample size can be as large as 10x of the true 

sample size. Being consistent with the pattern found in Thorson et al. (2017), the performance of 

the D-M method is negatively related to the ratio of input sample size to true sample size. However, 

even when the input sample size for the D-M method is specified to be 10x of the true sample size, 

the D-M method still performs better than the two tuning methods. We recommend ongoing 

research to accurately estimate the input sample size from field-measurements of age- and length-

composition (Stewart and Hamel 2014, Thorson 2014, Thorson and Haltuch 2018) because an 

accurate starting point for weighting compositional data improves model performance when using 

the D-M data weighting method. 

In terms of estimation performance of an assessment model, correctly specifying the 

distributional penalty for selectivity deviations is as important as choosing a proper method (i.e., 

the D-M method) for data weighting. When using the D-M data weighting method, correctly 

specifies selectivity (EM AR deviations) greatly outperformed the other two EMs with mis-

specified selectivity (EMs zero deviations and IID deviations). Several studies have suggested 

considering data weighting and time-varying selectivity together in stock assessments (Francis 

2011, Stewart and Monnahan 2017, Thorson et al. 2017, Wang and Maunder 2017). Results from 

this study provide another strong support for this suggestion. 

According to our simulation study, the D-M method for weighting composition data and the 

tuning method for penalizing selectivity variation (Xu et al. 2018) are able to provide proper data 
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weighting and selectivity penalizing simultaneously. In real-world stock assessments, both the 

level of variation in selectivity and the level of over-dispersion in composition data are unknown 

and need to be estimated. Considering that both methods have been implemented in Stock 

Synthesis (Methot and Wetzel 2013), a widely used stock assessment package, we recommend 

users to explore the two methods together in real-world stock assessments. When exploring the 

two methods simultaneously in stock assessments, we also recommend evaluating the 

autocorrelations in selectivity deviations using the “external” estimation method, which performs 

reasonably well in Xu et al. (2018) as well as in this study. It can improve stock assessments if 

process errors in selectivity are highly autocorrelated. 

We note that the performance of the D-M method is likely over-estimated in our idealized 

simulations. First, our assumption about selectivity deviations in the OM allows the simulated 

time-varying selectivity to be asymptotic only. However, real fishery selectivity can be dome-

shaped (Sampson and Scott 2011, Waterhouse et al. 2014) and the multinomial distribution was 

found to perform poorly in simulations where selectivity is assumed to be dome-shaped. Second, 

we only evaluated the impacts of mis-specifying selectivity on the performance of the D-M method 

in this study. Other biological processes including natural mortality, growth, and maturity were all 

assumed known without error. In real-world stock assessments, however, these biological 

processes are likely to vary in complicated ways, such that assessment models are likely 

misspecified in multiple ways simultaneously. In other words, these biological processes are more 

or less mis-specified in real-world stock assessments, leading to larger discrepancies between 

observed and predicted age-composition. Considering that the D-M data weighting method already 

under-estimates the effective sample size in this study, it may under-estimate the effective sample 

size to a larger extent in real-world stock assessments. 
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Third, there is another obvious limitation of this simulation study that can cause over-

estimating the performance of the D-M method. In this simulation study, the D-M method was 

used to weight the age-composition data sampled using a closely-related distribution (i.e., 

multinomial). Studies (Berg and Nielsen 2016, Berg et al. 2014) have shown that sampling errors 

in real fishery age-compositions can be positively correlated among ages. The multinomial 

distribution, however, only allows negative correlations among ages and therefore may not be 

appropriate for the sampling model that generates age-composition samples (Albertsen et al. 2017, 

Francis 2014). Indeed, the D-M method may perform worse for length-composition data because 

the positive correlations among lengths tend to be higher than those among ages. As such, the 

performance of the D-M method needs to be more closely evaluated in future studies using real 

fishery age-composition data. 
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Figures and Tables 696 

 697 

Figure 1. Comparison of the parametric fishery selectivity for the two types of life history (Pacific 

hake and Pacific sardine) as a function of age. The shaded areas show the ±1 standard deviation 

range of selectivity variation. The vertical dashed lines mark the age at 50% selection of the fishery. 
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 701 

Figure 2. 1st simulation experiment: trajectories of fully-selected fishing mortality (left) and 

spawning biomass (right) for the four hundred replicates. To facilitate the comparison among 

replicates, spawning biomass is rescaled to have an initial (𝑡𝑡 = 1) value of 1. 
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 705 

Figure 3. 1st simulation experiment: mean absolute relative error in the estimate of final year 

spawning biomass under the scenario of under-weighting (red circle), right-weighting (green 

triangle), or over-weighting (blue square) age-composition data. The four columns correspond to 

the four autocorrelation cases for simulated selectivity deviations: Independent, Time-correlated, 

Age-correlated, and Age- and time-correlated. EM1-3 have different selectivity specifications: 

zero deviations, IID deviations, and AR deviations.  
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 712 

Figure 4. 2nd simulation experiment: boxplot for the ratio of effective sample size to true sample 

size using the Dirichlet-multinomial (D-M), Francis, and McAllister-Ianelli (M-I) methods. The 

lower and upper hinges mark the first and third quantiles and the two whiskers extend to the value 

no further than 1.5 interquartile range from the corresponding hinge. The four columns correspond 

to the four autocorrelation cases for simulated selectivity deviations: Independent, Time-correlated, 

Age-correlated, and Age- and time-correlated. EM1-3 have different selectivity specifications: 

zero deviations, IID deviations, and AR deviations.  
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 720 

Figure 5. 2nd simulation experiment: mean absolute relative error in the estimate of final year 

spawning biomass under the Dirichlet-multinomial (D-M), Francis, and McAllister-Ianelli (M-I) 

methods. The four columns correspond to the four autocorrelation cases for simulated selectivity 

deviations: Independent, Time-correlated, Age-correlated, and Age- and time-correlated. EM1-3 

have different selectivity specifications: zero deviations, IID deviations, and AR deviations. 
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 726 

Figure 6. 3rd simulation experiment: violin plots for the ratio of effective to true sample size under 

three degrees of over-dispersion (𝑑𝑑 = 2, 5, and 10) in age-composition data. The horizontal line in 

the violin plot denotes the median. The four columns correspond to the four autocorrelation cases 

for simulated selectivity deviations: Independent, Time-correlated, Age-correlated, and Age- and 

time-correlated. EM1-3 have different selectivity specifications: zero deviations, IID deviations, 

and AR deviations.  
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 733 

Figure 7. 4th simulation experiment: violin plots for the ratio of effective sample size (𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒) to true 

sample size and the ratio of estimated (𝜎𝜎�𝑆𝑆) to the true level of selectivity variation under three 

degrees of over-dispersion (𝑑𝑑 = 2, 5, and 10) in age-composition data. The horizontal line in the 

violin plot denotes the median. The four columns correspond to the four autocorrelation cases for 

simulated selectivity deviations: Independent, Time-correlated, Age-correlated, and Age- and 

time-correlated.  
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 740 

Figure 8. 4th simulation experiment: violin plots for the estimates of selectivity autocorrelations in 

age (𝜌𝜌�𝑎𝑎) and time (𝜌𝜌�𝑡𝑡) under three degrees of over-dispersion (𝑑𝑑 = 2, 5, and 10) in age-composition 

data. The horizontal line in the violin plot denotes the median. The four columns correspond to the 

four autocorrelation cases for simulated selectivity deviations: Independent, Time-correlated, Age-

correlated, and Age- and time-correlated. Horizontal dashed lines mark the true value for each 

autocorrelation coefficient in selectivity.  
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Table 1. Population dynamic equations in the operating model and estimation model. 747 

No. Equation Comment 

T1.1 𝑁𝑁𝑎𝑎,𝑡𝑡

= �
𝑅𝑅𝑡𝑡                                                                                                                       𝑎𝑎 = 0
𝑁𝑁𝑎𝑎−1,𝑡𝑡−1 exp�−𝑆𝑆𝑎𝑎,𝑡𝑡−1𝐹𝐹𝑡𝑡−1 − 𝑀𝑀�                                                                 0 < 𝑎𝑎 < 𝐴𝐴
𝑁𝑁𝐴𝐴−1,𝑡𝑡−1 exp�−𝑆𝑆𝐴𝐴,𝑡𝑡−1𝐹𝐹𝑡𝑡−1 − 𝑀𝑀� + 𝑁𝑁𝐴𝐴,𝑡𝑡−1 exp�−𝑆𝑆𝐴𝐴,𝑡𝑡−1𝐹𝐹𝑡𝑡−1 − 𝑀𝑀�    𝑎𝑎 = 𝐴𝐴

 

Stock equations 

T1.2 
ln(𝑅𝑅𝑡𝑡)~N �ln � 4ℎ𝑅𝑅0𝑆𝑆𝐵𝐵𝑡𝑡

𝑆𝑆𝐵𝐵0(1−ℎ)+𝑆𝑆𝐵𝐵𝑡𝑡(5ℎ−1)
� − 𝜎𝜎𝑅𝑅

2

2
, 𝜎𝜎𝑅𝑅

2�  Recruitment 

T1.3 𝑆𝑆𝐵𝐵𝑡𝑡 = ∑ 𝑤𝑤𝑎𝑎𝑀𝑀𝑎𝑎𝑁𝑁𝑎𝑎,𝑡𝑡
𝐴𝐴
𝑎𝑎=0   Spawning biomass 

T1.4 𝐶𝐶𝑎𝑎,𝑡𝑡 = 𝑁𝑁𝑎𝑎,𝑡𝑡
𝑆𝑆𝑎𝑎,𝑡𝑡𝐹𝐹𝑡𝑡

𝑆𝑆𝑎𝑎,𝑡𝑡𝐹𝐹𝑡𝑡+𝑀𝑀
(1 − 𝑒𝑒−𝑆𝑆𝑎𝑎,𝑡𝑡𝐹𝐹𝑡𝑡−𝑀𝑀)  Catch-at-age 

T1.5 
ln�𝑁𝑁𝑎𝑎,1�~N �ln(𝑅𝑅0𝑒𝑒

−𝑎𝑎𝑎𝑎) − 𝜎𝜎𝑅𝑅
2

2
, 𝜎𝜎𝑅𝑅

2�  Initial conditions 

T1.6 
𝐹𝐹𝑡𝑡 = 𝐹𝐹𝑡𝑡−1 �

𝑆𝑆𝐵𝐵𝑡𝑡−1

𝛾𝛾𝛾𝛾𝐵𝐵0
�
𝜆𝜆
 (𝐹𝐹𝑡𝑡=1 = 0.1)  

Fishing mortality 
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Table 2. Parameter values for the two types of life history investigated in this study. 749 

  750 

Parameter Name Symbol Pacific hake Pacific sardine 
Natural mortality rate 𝑀𝑀 0.386 yr-1 0.552 yr-1 
Length at age 0 𝐿𝐿0 1 cm 1 cm 
Asymptotic maximum length 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 90 cm 30 cm 
Von Bertalanffy growth coefficient 𝑘𝑘 0.20 yr-1 0.30 yr-1 
Log-maximum annual spawner per spawner LMARR 2 1 
Age at 50% selection in the fishery 𝑆𝑆50 5.44 3.55 
Rate of change in selectivity at age 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 2 
Age at 50% maturity 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 5.44 3.55 
Steepness of the Beverton-Holt SR function ℎ 0.83 0.55 
Ratio of equilibrium SB to unfished SB 𝛾𝛾 0.4 0.4 
Acceleration rate in fishing mortality 𝜆𝜆 0.2 0.2 
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Table 3. Summary of the factorial design for each simulation experiment in this study. The 

columns from left to right represent experiment number, operating models (1-4 represent 

Independent, Time-correlated, Age-correlated, and Age- and time-correlated), estimation model 

(1-3 represent zero deviations, IID deviations, and AR deviations), how the effective sample size 

is estimated in the estimation model, data weighting methods (McAllister-Ianelli (M-I), Francis, 

and Dirichlet-multinomial (D-M)), the degree of over-dispersion in simulated age-composition 

data, the input sample size for the D-M method, and how the level of variation in selectivity is 

specified in the estimation model. 
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Exp OM EM 𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒 Data weighting Over-dispersion 𝑛𝑛𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑡𝑡 (D-M) Sel var 
1 1-4 1-3 Fixed  0.1x, 1x, 10x 𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 - - true 
2 1-4 1-3 Estimated M-I, Francis, D-M - 𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 true 
3 1-4 3 Estimated D-M 2x, 5x, 10x 2x, 5x, 10x 𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 true 
4 1-4 3 Estimated D-M 2x, 5x, 10x 2x, 5x, 10x 𝑛𝑛𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 estimated 
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Appendix 761 

 762 

Figure A1. 1st simulation experiment: boxplot for the mean absolute relative error in the estimate 

of final year spawning biomass showed in Figure 3. To estimate the uncertainty of the mean 

absolute relative error, the 400 replicates in this simulation experiment were randomly resampled 

with replacement for 400 times.  
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 767 

Figure A2. 2nd simulation experiment: boxplot for the mean absolute relative error in the estimate 

of final year spawning biomass showed in Figure 5. To estimate the uncertainty of the mean 

absolute relative error, the 400 replicates in this simulation experiment were randomly resampled 

with replacement for 400 times.  
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 772 

Figure A3. 4th simulation experiment: mean absolute relative error in the estimate of final year 

spawning biomass three degrees of over-dispersion (𝑑𝑑 = 2, 5, and 10) in age-composition data. 

The four columns correspond to the four autocorrelation cases for simulated selectivity deviations: 

Independent, Time-correlated, Age-correlated, and Age- and time-correlated. EM1-3 have 

different selectivity specifications: zero deviations, IID deviations, and AR deviations. 
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